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ABSTRACT

The approach to Gaussianity of the output y(t) of a narrow-band

system h(t) is investigated. It is assumed that the input x (t) is an

a-dependent process in the sense that the random variables x(t) and x(t+u)

are independent for u > a . With F(y) and G(y) the distributi'n function

of y(t) and of a suitable normal process, a realistic bound B of the differ-

ence F(y) - G(y) is determined and it is shown that B - 0 as the band-

width o of the system tends to zero. In the special case of the shot noise

process

y(t) = h(t-ti)
i

it is shovm that

IF(y)-G(y) < 0~-

where X is the average density of the Poisson points t .

1. Introduction INTRODUCTION

In the engineering applications of random signals it is often

assumed that if a stationary process x(t) is the input to a linear system,

then the resulting response

t(t) = ' x(t-a) h(a)da (1)

"tends to a normal process as the bandwidth wo of the system tends to zero.



*• This theorem is not always true as orte can show with a trivial counter

example. However, it holds under fairly general conuditions. To appy .•y

meaningfully, we need to establish not only conditions for its asymptotic

validity, but also realistic bounds for the devw.ation of y(t) from Gaussianity

for a given w 0.
0

As one might expect from the central limit theorem, y(t) will

approach Gaussianity if the past x (u), u < t of the process x (t) is "almost"

independent of its future x (u), u > t + T for sufficiently large r . This

loose requirement is precisely formulated in Rosenblatt's classic paper [1]

as follows t

Let Bt and F be the Borel fields generated by the random

variables x (u) fir u < t and u > t + T respectively. We say that the

process x (t) satisfies the strong mixing condition if there is a function

g(a) with

0o< g(ct)o0 as c (2)

such that for any pair of events BeBt, FCFI

I P(BF) - P(B) P(F) I<g(r) (3)

Assuming further that the moments of x (t) of order up to four exist and

satisfy certain conditions and that its power spectrum S(Uj) is such that

S(w) > 0 (4)

he shows that the output ), (t) of a certain class of filters tends to

Gaussianity.

In applying Rosenblatt's result, we are faced with the problem of
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testing the mixing condition (3). Furthermore, the problem of establishing

realistic bounds for the distance of y(t) from Gaussianity remains. In this

paper we shall overcome these difficulties but only at the sacrifice of gener-

ality. We shall base our analysis on the assumption that the process x (t)

is a-dependent, i.e., that the events B and F are independent for T >a.

This assumption is equivalent to the condition

g () = 0 for Mi>a (5)

The above is, of course, more restrictive than (2), however, it holds in

many applications and can be often readily established. Suppose, for

example, that x (t) is the output of a. memory-less non-linear system with

input a norrr al process s (t). In this case, condition (5) is equivalent to the

assumption that the autocovariance C(T) of s(t) vanishes for r > a.

2. The Berry-Esseen Theorem

The output y(t) of our system is a linear combination of a non-

countable infinity of dependent random variables. As we show in section 5,

if the input x(t) is a-dependent, then the principal part of y(t) can be

expressed as a sum of independent random variables. To solve our problem

we shall need, therefore, a bound of the deviation of such a sum from

Gaussianity. Such a bound is given in the following important theoremil due

to A. C. Berry and G. Esseen [2, 3]. We present it here for easy reference

and also because in the proof we make use of a useful lemma (Appendix A)

which is an improvement of the corresponding lemma 1 in Feller [2, p. 510].

Wi._h its help, we obtain the constant 4 in (8), whereas, the corresponding

constant in Feller is 33/4. However, as it is stated in [2], unpublished

calculations mention the constant 2. 9 (Esseen, 1956) and 2. 05 (Wallace,1958)

Consider a sequence X1 , x 2 , ... of independent r.v. (random

43



variables) such that

S2, 2 1I 131

Eixi O, jx.;t O ixa~ jC

We form the sum

X X. where c2 < O (6)

Clearly, E (x 2 ] = 2 . With ]F'(x) the distribution function of x and

x 2/

G(x) = 2 /2 dy (7)

that of a normal r. v. with the same mearn and variance, we wish to bound

the "distance" I F(x) - G(x) of x from Gaussianity.

Theorem. If

c.

iz

then

IF(x)- G(x) 1< 4(8)

Proof. With i (w) and I (W) the characteristic functions of the r. v. xj and

x respectively, we conclude from (6) and the independence of the x. s that

4 = "' (9)

As we see from (B-6)

.Z w2 5c. 3

(w) = e 2 i21 W < < .ao)
1 _2X - 2c

(throughout' the paper the letter 0 will always be such that 16 11 ),

hence,

4



l •, 3 2

"-(w- 2 o 21- 3W•J iZ cT 21-+ a[ •J

because

SC.
1 C.< Max---I < X

But for any z

1+ Iz I 2e I ZI (2

hence,

~(w)- Z < -2 21X a wV

2 2wF, lox II
R ~j~IW3e L-R- A w1 e (13)

210I~ 2Zia 3

We now introduce a function r(x) as in (A-i) with Fourier trans-

form R(w) such that

R(w)=0 for a

As we see from (A-li

• ) R(w" :< R(O)e--1 (1-)

n -e transform of the convolution

g (x) S[ < (O) - GIx) r ) (16)
Si Te tansfrm f te covoltio



is given by [41

(W) - e" /2
jWR(w)

hence,

W1 ~2/Z W I~

< )• rW2 -W2/ 5x%
2T~~g~)j1  Lw)-e w~)dl 2W/4 d

ZrI 1= I

Ig(x) 1• 0 x(17)

Since

we conclude from (17) and (A-15) that
-- I

IF(x)- G(x) I /T. (18)

where the constant y. is such that

r(x) dx + 5 +3a63o'y

0

We now choose for r a() the Fejer kernel [4]

sin2 (WX/2)
Sr(x) = - 2/ (20)

w 1

whose transform is a triangle satisfying (14). And with

6



w 1 Y a Y

2 4r

V(21)

we conclude that

"F(x) - G(x)I <-- w (22)

where w is such that

w
I sinx x (

Sdx2 
6 , ,/"Z 

( 3

Solving we find

w ~ 1. 26

Inserting into (22) we obtain (8).

Corollary. If the r. v. z are independent with

E [zi]= 0 E fzi 21= a2 , E [ Izji 3 ]< c (24)

and

~z : L Zi Iz • ail_< A 1: )L.i2 2 2

then

F~z)G (aZ,7)1 4 c 3(25)
OL a

The above follows from (8) with x. = . .

3. Systems driven by -ýn impulse train

Consider a band-limited system with energy E

E= h (t)dt H(w) =0 for W W 0 (26)
-CO0

7



As it is known [5J ,

[Ew

Ih(t) h t- h(tnT) -- for T<< 'T (27)
n= -T 0

With zn a sequence of r.v. as in (24) we form the impulse train

x(t) =Zz (t-nT) T< (28)

m 0

If x(t) is the input to our system, then the resulting output is given by

y(t) = z h(t-nT) (29)

n
Clearly,

2 2 E 2
F •y(t)=O , E I y (t) - T

With F(y) the distribution function of 'y(t), it follows from (25) and (27)

that

Tw
_ y(30)y 3 '

From the above it follows that y(t) tends to Gaussianity with w° 0 .

4. Shot noise

Consider the random points t of a Poisson pzccess wxith a-.-erage

density X. If the sequence of impulses

n

is the input to our system, then the resulting output

8



v(t) = h(t-t-) (32)
n

is the familiar shot noise process [6,7] . As it is known, the characteristic

function o (w) of y(t) is given by [8, p. 567]

Xf'D~j~h~)-Ijdt

0 (W) = ew (33)

and its mean rj and variance 02 by (Camphell's theorem [8, p. 569]

X= f h(t) dt 02 = Xj h 2 (t)dt = X E (34)

To simplify notations we shall consider the normalized process

y(t) - n
s(t) = - (35)

whose mean is zero, variance one, and characteristic function

-j--•
t(w) = e () (36)

With F(s) the distribution function of s (t) we shall show that

F(s)-G(s) (37)

Proof. Since [ see (B-6)]

juwh(t) _____W__13 (

=l -j wh(t) - 9 (t) L t-, 1 (t) 1 (38)

we conclude from (33) and (36) that all w

i w~2 3
-W + Bow 3

9() e1 (39)

9



where

X Ih(t)13 dt
- E- 0< 0 (40)
61!X3 E3

because [see (27)]

It t ýEw.E;;
J h(t)j dt < ,, J h (t) dt = E -0 (41)

-CO - C

From (39) and (12) we obtain

2w 2

.(w)-e- I = e -42)

valid for all w. With e < 1 a constant to be soon determined, we observe

* that

2-.T~+BI•1 3 < for w(43)for W f - (1 - - )- W1 4,

hence,

(w) - e I2/2 < iwi3 e -2
-2_6 1w V_ w1  (44)"

v We now proceed as in section 2: with r(x) an.d g(x) as in (16), we

S~have

wl .. 2/7 2/wR.w) -e B r wze-
TTI g(x)I W R < w dwi f 21ý Tr

~W

IIT~herefore, [see (17) to (23)]

101



I
Sjg(x) < 8 C 45

g (X (45)

and

Zw '/ 88 1 C

IF(x)- G(x) < W- - - (46)

where w is such that

W
Wsinx e(ex-1

"-- • dx + (47)
Sx

It remains to solve (47) for w as a function of e, and find e such as to

minimize (46). We find that the optimum C and the corresponding w are

given by

e 2" .3 w,= 1.9

Ins, rting into (46) we obtain (37). The bound (44) yields

2/, 2/

(W•) - e" 1< 13 ~ e- 6, A 1WeI <

The value of e is not critical.

5. Band-limited systems with a-dependent inputs

Consider a stationary process with zero mean, autocorrelation

R(r), and power spectrum S(w)

"E:E [x(t)j= 0 , R(T = E [x(t-+T)x(t) 1 e--S(w) (48)

We shall assume that x (t) is a-dependent [10] as defined in section 1.

From the definition it follows that if the instances t and t are such
r s



that

1-1x Lr + a< ain 1 (49Y)
r s•"r s

then the r. v. x (t ) and x (t ) are independent. Hence,
R r " S

a

R(T C for IT I> a, S(0) =f R(T) dT (50)

-a

We define the constant 0. by

* a

IT , I R(T)d" CtS(O) (51)
-a

"i It is easy to see that a < 1

In this section we shall bound the deviation of the output y(t) of our

system (26) in terms of the above quantities and the third absolute moment

E [ Ix(t)I3 I = c (52)

of the input x (t).

For this purpose, we express the impulse response h(t) of our

system as a sum (Fig. 1)

h(t)= h(t) + (t) (53)

of a staircase function

h(t) =h(nT) (n T <t<(n+-1) T (54)

and an error term e(t) ,where T is such that

IT a+b (55)
~w

0

12



,•h(t) hCt)

E(t)

><T

Fig. 1

13



We next form the r.v.1 1
•--:(n-) T + B (n +-)T

x= It- C) dx CL w (t--)d da (56)
!r T +I

(n--) (n--)T+b

and

zn w=Zh(nT)w (57)

n n

As we see from (53), the output y(t) of the system is given by

y (t)= (a.) x (t- a) dL+ e (58)

-CD

where

e= C (CL)x(t-CL) da (59)

-- -

From the above it follows that

Z w y(t)=+we (60)

As we shall presently see, if

a <<TT<< /w (61)

then the dominant term in (60) is the r. v. z

From (56) and (57) and the stationarity of x (t) it follows that

[9 p. 3 4 6 ]

14
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,'.~ r.n = 0 , ".~ nJ- U
z n v -Ln

aZ2 ft 7b

E .z2  b j R(T) [1- ] ddT= S(0) (1- CLI)b (62)
-a

a

Ewn 2 ] =as R(r)[1- Tl dT = S(0)(1- O)a (63)
-a

bbb

E I z 3J < E f IX (c11 ) X(Cx )(c1 3  Idca, dciLd 3  (64)
000

But

E3 Ixyz < _<E rIx 3 ] Ef tI y131 E t I z13) (65)

as one can show from IT61der's inequality, hence, [ see (52)]

E f Izn13 ) <b 3 c (66)

From the a-depeadence of x (t) it follows that the r. v. z are independent,

•-hence, [ see (27)]

a [z2= h2 (nT) E t z -) S(0) (1- O)b (67)

n

But Ih(nT)I < I 0 , therefore, [see (25) and (68)]

F(z)- G ,z)< A, T2 W0
i z

where



!7

A4 c (69)

Vi/ tS$(0) (1- CLa a/b)3

The r. v. wn are also independent, hence,

2 2 A~ 2a
2 E [w 2 ] = L h (nT) E (w n]= E (70)aw = - -n 2T (

n

where

Azz = S(O) (1-ci) (71)

From (59) it follows that [9, p. 346)]

a
2< N(0)J RIl IdC < E,2aR(O)<EA-a (72)e _ 3 (2

-a

wbere

32 1 T32
A2= - R(O) w (73)

From the above it follows that

E ( (w + _e)? I < (aw + Se)2 = E(A +A 3 )2 a (74)

The constant T is still to be determined. If it is small, then

the bound in (68) is small, however, the variance of the term w+ e is

large. To account for its effect on the distribution F (y) of y(t) [see (62)]
y

we shall use the bound tD-3) in Appendix D. As we see from (74) and (67)

16



_E [(w+ e)2 E (A2 -A3 , T a
< - 2 3 A4 (75)

[E [z ] -E S(0)(l-C•a/b) 4 T

where

(A A2 +A3 )2 (b+a)
A = S (b-ciaT (76)

0

We note that the quantities A,, A2 and A4 are essentially indepen-

dent of the system. Furthermore, the final result is useful only if w is so

small that a <<T<< /« /W In this case, A3 <<Az, b- T and A. is

close to unity.

Wromr (75), (68), (60), and (D-4) -it follows that

5(y)- G ) < A, T 2 0 + 1. 03,/ A4 -T (77)

Choosing T so as to rniimize the above, we iinally obtain

F (y)- G (-Y) < N A, A-o (78)
_'y- a 0

rFrom the preceding discussion it follows that if the input to a

band-limited system is an a-dependent process such that

E [ Ix13 1 <- and S(O)i0

then the resulting output tends to Gaussian.!ty with ° 0

17
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Appendix A I
A useful lemma. Given an even non-negative function r(x)'of unit area

Jr(x) dx = 1 r(-x) r(x) r(x) > 0' (A-1)

-CO

and a differentiable function cp (x) such. that

_ (• I (x) >-A< (A-Z)

we form the convolution integral

g (x) = c,( r(x-g) d'= ep(x) * r(x) (A-3)

!iii We maintain that if

Ig(x) < B (A-4)

then [9, 11, IZ]

cD(x) < < ZAY (A-5)

where V is such that

" x B (A- 6)
j r)d=56Ay

0

Proof. Suppose that the maximum of cp(x) equals C. Without loss of gener-

ality we can assume that this maximum is reached at x 0. Thus

lCO(x) D< I cp(0) I = C (A-7)

Consider first the case p (0) > 0 . Clearly,

cp (x)- C= I c'() d
0

18
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I.
Hence,

T (x) > C - Ax (A-8)

Furthermore,

0 2x

+ J j- J r ()rx- )dgg(x) =
-00 0 2x

From (A-8) and the evenness of r(x) it follows with x - y that

2x 2x x

(7) r(x-§) dl>f (C- As) r (x-E) d= 2 [C-Ax] f r(y) dy
0 0 0

But
0 0 x
+ jp(g) r(x- )dg< C [i xr d'+ C 1-2+ r(y) dy

- Z ?x 2x 0

Hence,

x

g(x) > [ 4C-2Ax] j r(y) dy - C
0

Letting

x
=-- (A- 9)

ZA

in (A-9) we conclude with (A-4) that

C/2A

B> 3C J r(y) dy - C (A-10)

0

If our assertion (A-5) is not true then

cp (0) = C>2 A y (A-11)

19



But this leads to a contradiction because then (A-10) would yield [see (A-6)]

Y

B> 3 c r(y) dy GB > B
0

hence, (A-4) is true.

The case cp (0) < 0 can be reduced to the above. Indeed, with

T 1 (x) = - ep (-x), gl(x) = cpl(x) * r (x)

we have

CP1 (x) = a (-x) gl(x) = g(-x)

hence,

I 1•Pl(X) r.1 (0)> O, 0 gl(x) I < B

From the above it follows that c ep1(x) I.< 2A y and the proof of the theorem

is thus complete.

Corollary. Consider two distribution functions Fl(X), F,(x) and a function

r(x) satisfying (A-b). With

g(x) = [ - F(x)] r(x) (A-12)

we maintain that if

Fz (x) < A (A-13)

and

I g(x)•I< B (A-14)

then

I Fl(X) - FZ(x)I< 2 A -Y (A-15)

20



where y is as in (A-6).

Proof. With

CP (x) = Fl(x) - F 2 (x)

we have cp (£) = 0 . Furthermore,

cp(x)_> C - Ax

as we see from (A-13) and the monotonicity of Fl(x). The desired bound

(A-15) follows as in the lemma.

Appendix B

Consider a random variable x such that

E [x)= 0 , E [x 2 )= C2,= c (B-i)

PFith f(x) its density function and

S(w) = f(x) ejWx dx (B-2)

the corresponding characteristic function, we mainthin that for all W

w2(2

() I < W2 (B-3)
__2

6() 2 6 (B-4)

and

a W 2+ 5c IW1 3  
2

Se *(w)-e 21 for Iwk<- (B-5)

21
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Proof

As it is known [2, 13]

JW +jx8W 2 x 2

e: =1 + jWX + 81 2 x I< 1

(B-6)

x W2x22 3x3
e +jWeJWX =l+jx x-• + _6 • I GI< 1

2 2 61
Inserting into (B-2) we obtain (B-3) and (B-4).

From the expansion

2 3-log (l-z) = z+ z+ T + "1"z 1<I (B-7)
z 3

it follows with z = 1- (w) tbltif I1- (W) 1<1, then

.- log (1- [1-f (w}] )= [1-f€ (W)] + ynIl-1 ¢(w}]n (B- 8)

n=2

hence,

-•log j (W) +- _I W2a (W) - 1- W + I- 0 (W) n(B- 9)

n=2

As it is known, a 3< c "hence, for

C2 < 1 (B-10)

•1• 1
* ~2c - 0(Bb

1-*(W) W2 C2 < I~

Therefore, *1

22



r r2  2 22 rZ 1< 4r 2

_ -j1-•(w) _-T[l+-r+ ÷" < 2 1-r 7
n=2

and [ see (B-6), (B-9) and (B-4)]

log 2 W + 2 a - < 5c 1 32 7 21 ( -1

from which (B-5) follows.

Appendix C

In the decomposition

h(t) = h(t) + E (t) (C-1)

of Fig. 1, the transform H(w) of h (t) is given by [14]

H(w) = 2 sin (wT/2) H(W+-) (C-2)
Tw T

n

(Fig. 2) and its energy [15, p. 122] by

_0 (Odt =T hC h2 )nT) r ( 3)

_-o n

We shall show that

CO

EC= J e 2 (t) dt< -! Tw- (C-4)
12 0

Proof. Since H(O = 0 for 1w I> W0 we conclude from Parseval's

formula that
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2 Sin (wT/2) I

r• N

N I

N 2v
NT

H (w)

Sw

0 WO0

Fig. 2
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J H(,)12 Zsin(WTI2)
""r T W

-~-C -W
0

hence,

0

E- rltih~tl2  r 2 sin (wT/2)] d w

c o

0

But
3

sin x - x < <

hence

T~ 2~ 0
E ?_ I H(w)I dw < -ý- T' We-: 24IT 1 -12 0

-W

Appendix D

The r.v. x is such that E [x] 0 E x2 )= 1 With F(x) its

4istribution function, w assume that [ see (7)]

I F(x) - G(x)j < 6 for all x (D-1)

The r.v. y is such that

E (y-{ 0 E{II]: EM, E [ a 2  (D-2)

We form the sum

z= x +y

With Fz (z) the distribution function of z we shall show that:

25



a) if the r. v. x and y are independent, then

F F zI) -G(z) < 8 + ý---- (D- 3)

b) In any case,

3

IFz(z)- G(z)I < 6+1.03 a (D-4)

Proof. a) With fy (y) the density of y, it follows from the independence

of x and y that

F z(Z) j F(z-ý) fy (F,) d (D- 5)

-w I
hence,

Fz(z) - G(z) = J [ F(z-ý) - G(z-ý) + G(z-g,) - G(z) ] fy () d7 (D-6)

But

LG(z-1)- G(z)l G ' (z-0 (D- 7) <.I

therefore,

F (z) - G(z) I< 6+ : 6 +

and (D-3) follows because M1 < a.

b) Fz(z) equals the probability masses in the region x + y < z of the x-y

plane. With S a constant to be soon determined, we see that

F(z-e)- P [vy>e] < F (Z)<F(z+E)+ P < (D-8)

26



r i^i^_11
iL

G (z-e) - 6- p > - G(z) <Fz(z) - G(z) <G(z+E) + 6+ P [y<-6)- G(z)

and I see (D-7)]
€._•_ ÷ p[IY > e](D-9)

•F z(z)-G(z) I < 6 + +p y (-9

It remains to select C so as to ,nzinimize the above bound. From

Tchebycheff's inequality we have [9, p. 150]

P[)I ] < Cy

hence,

F(z) G (z) I < 6+ - + (D-10)

This quantity is minimum for

3-

C = 32-0 zj-

-Inserting into (D-10) we obtain (D-4).

If the variance of x is not one but Oxz, then

3•.

F)-G(X < + 17C"2(D-11)
X8 8ex

This follows readily from (D-4) by a simple scaling.
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